鋰離子電池已經成為可攜式電子產品的電池。這種電池的容量密度高、價格具競爭力,在未來的幾年內,仍將是市場主流產品。但是鋰電池卻一直潛藏著爆炸的危險。
由于鋰離子電池的應用愈來愈廣,爆炸事件層出不窮。其實,透過正確的電池設計系統(tǒng)及電芯等級判定,鋰離子電池是可以做到非常安全的,目前防爆線路及防爆技術都已成熟,爆炸事件應該可以愈來愈少。
可以通過鋰離子的電池特性來分析:鋰是化學周期表上直徑zui小也是zui活潑的金屬。但是因其化學性質太活潑,給它的使用帶來了*的危險性。當鋰金屬暴露于空氣中時,會與空氣中的氧氣發(fā)生化學反應而產生爆炸現象。為了提升安全性及電壓,科學家們發(fā)明了用石墨及鈷酸鋰等材料來儲存鋰原子。這些材料的分子結構,形成了納米等級的細小儲存格子,可用來儲存鋰原子。這樣一來,即使是電池外殼破裂,氧氣進入,也會因氧分子太大,進不了這些細小的儲存格,使得鋰原子不會與氧氣接觸而避免爆炸。鋰離子電池的這種原理,使得人們在獲得高容量密度的同時,也達到安全的目的。
鋰離子電池充電時,正極的鋰原子會喪失電子,氧化為鋰離子。鋰離子經由電解液游到負極去,進入負極的儲存格,并獲得一個電子,還原為鋰原子。放電時,整個程序倒過來。為了防止電池的正負極直接碰觸而短路,電池內會再加上一種擁有眾多細孔的隔膜紙,來防止短路。好的隔膜紙還可以在電池溫度過高時,自動關閉細孔,讓鋰離子無法穿越,以自廢武功,防止危險發(fā)生。
保護措施
鋰電池芯過充到電壓高于4.2V后,會開始產生副作用。過充電壓愈高,危險性也跟著愈高。這是因為在過充過程,電解液等材料會裂解產生氣體,使得電池外殼或壓力閥鼓漲破裂,讓氧氣進去與堆積在負極表面的鋰原子反應,進而爆炸。因此,鋰電池充電時,一定要設定電壓上限,才可以同時兼顧到電池的壽命、容量、和安全性。的充電電壓上限為4.2V。
鋰電芯放電時也要有電壓下限。當電芯電壓低于2.4V時,部分材料會開始被破壞。又由于電池會自放電,放愈久電壓會愈低,因此,放電時不要放到2.4V才停止。鋰電池從3.0V放電到2.4V這段期間,所釋放的能量只占電池容量的3%左右。因此,3.0V是一個理想的放電截止電壓。
充放電時,除了電壓的限制,電流的限制也有其必要。電流過大時,鋰離子來不及進入儲存格,會聚集于材料表面。這些鋰離子獲得電子后,會在材料表面產生鋰原子結晶,這與過充一樣,會造成危險性。萬一電池外殼破裂,就會爆炸。
因此,對鋰離子電池的保護,至少要包含:充電電壓上限、放電電壓下限、及電流上限三項。一般鋰電池組內,除了鋰電池芯外,都會有一片保護板,這片保護板主要就是提供這三項保護。但是,保護板的這三項保護顯然是不夠的,鋰電池爆炸事件還是頻傳。要確保電池系統(tǒng)的安全性,必須對電池爆炸的原因,進行更仔細的分析。
爆炸類型分析
電池芯爆炸的類形可歸納為外部短路、內部短路、及過充三種。此處的外部系指電芯的外部,包含了電池組內部絕緣設計不良等所引起的短路。
當電芯外部發(fā)生短路,電子組件又未能切斷回路時,電芯內部會產生高熱,造成部分電解液汽化,將電池外殼撐大。zui后將電池外殼撐破,甚至將電池溫度提高到使材料燃燒并爆炸
內部短路主要是因為銅箔與鋁箔的毛刺穿破隔膜,或是鋰原子的樹枝狀結晶穿破膈膜所造成。這些細小的針狀金屬,會造成微短路。因此,內部短路引發(fā)的爆炸,主要還是因為過充造成的。因為,過充后極片上到處都是針狀鋰金屬結晶,刺穿點到處都是,到處都在發(fā)生微短路。因此,電池溫度會逐漸升高,zui后高溫將電解液氣體。這種情形,不論是溫度過高使材料燃燒爆炸,還是外殼先被撐破,使空氣進去與鋰金屬發(fā)生激烈氧化,都是爆炸收場。
但是過充引發(fā)內部短路造成的這種爆炸,并不一定發(fā)生在充電的當時。有可能電池溫度還未高到讓材料燃燒、產生的氣體也未足以撐破電池外殼時,消費者就終止充電,帶手機出門。這時眾多的微短路所產生的熱,慢慢的將電池溫度提高,經過一段時間后,才發(fā)生爆炸。消費者共同的描述都是拿起手機時發(fā)現手機很燙,扔掉后就爆炸。
綜合以上爆炸的類型,我們可以將防爆重點放在過充的防止、外部短路的防止、及提升電芯安全性三方面。其中過充防止及外部短路防止屬于電子防護,與電池系統(tǒng)設計及電池組裝有較大關系。電芯安全性提升之重點為化學與機械防護,與電池芯制造廠有較大關系。
電話
微信掃一掃